Buckling Behavior of Substrate Supported Graphene Sheets
نویسندگان
چکیده
The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm), both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.
منابع مشابه
Buckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملBuckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملInvestigation of Linear and Nonlinear Buckling of Orthotropic Graphene Sheets with Nonlocal Elasticity Theories
In this paper, analysis of linear and nonlinear buckling of relatively thick orthotropic graphene sheets is carried out under mechanical load based on elasticity theories. With the help of nonlocal elasticity theory, the principle of virtual work, first order shear theory and Von-Karman nonlinear strain, the dominant relationship in terms of obtained displacements has been obtained, and the me...
متن کاملNon-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method
In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...
متن کاملNonlinear Mechanics of Single-atomic-layer Graphene Sheets
The unique lattice structure and properties of graphene have drawn tremendous interests recently. By combining continuum and atomistic approaches, this paper investigates the mechanical properties of single-atomic-layer graphene sheets. A theoretical framework of nonlinear continuum mechanics is developed for graphene under both in-plane and bending deformation. Atomistic simulations are carrie...
متن کامل